Simulating Space Use of Animals from RSF and SSF

Johannes Signer (signer_j)

Wildlife Sciences, Georg-August-Universität Göttingen Movebank Workshop SCENE

2019-05-02

Johannes Signer (🔄 jsigner@gwdg.de, 🎔 signer_j, 🔾 jmsigner)

Problem: How to quantify and predict space use by animals?

1. **Space use**: usually summarized in terms of a 2-D (or 3-D) utilization distribution that captures the relative frequency of time spent in different locations.

Problem: How to quantify and predict space use by animals?

- 1. **Space use**: usually summarized in terms of a 2-D (or 3-D) utilization distribution that captures the relative frequency of time spent in different locations.
- 2. How to obtain accurate estimates of space use?

Problem: How to quantify and predict space use by animals?

- 1. **Space use**: usually summarized in terms of a 2-D (or 3-D) utilization distribution that captures the relative frequency of time spent in different locations.
- 2. How to obtain accurate estimates of space use?
- 3. Is it possible to predict space use of animals in novel or altered landscapes?

Why not use home ranges?

 Traditional home-range concept¹ is complex and nontrivial to quantify.

 $^{^{1}}$ Burt, W. (1943). Territoriality and home range concepts as applied to mammals. Journal of mammalogy, 24(3), 346-352.

²Signer, J. et al. (2017). Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8(4), e01771.

Why not use home ranges?

- Traditional home-range concept¹ is complex and nontrivial to quantify.
- Most home range estimators do not provide a mechanistic model linking space use to habitat characteristics and movement → prediction.

¹Burt, W. (1943). Territoriality and home range concepts as applied to mammals. Journal of mammalogy, 24(3), 346-352.

 $^{^{2}}$ Signer, J. et al. (2017). Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8(4), e01771.

Why not use home ranges?

- Traditional home-range concept¹ is complex and nontrivial to quantify.
- Most home range estimators do not provide a mechanistic model linking space use to habitat characteristics and movement → prediction.
- Simulations from integrated Step Selection Functions (iSSFs) are an interesting alternative to home ranges to quantify space use².

¹Burt, W. (1943). Territoriality and home range concepts as applied to mammals. Journal of mammalogy, 24(3), 346-352.

 $^{^{2}}$ Signer, J. et al. (2017). Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8(4), e01771.

- Estimate distribution for step lengths and turning angles.
- Pair each observed step with J random steps.
- Extract covariate values at the end of each step.
- Estimate selection coefficients β with a conditional logistic regression.

 $^{^{1}}$ Avgar, T. et al. (2016). Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7(5), 619-630.

- Estimate distribution for step lengths and turning angles.
- Pair each observed step with J random steps.
- Extract covariate values at the end of each step.
- Estimate selection coefficients β with a conditional logistic regression.
- iSSF: including movement related covariates (e.g., step length and turning angles) is equivalent to fitting a biased correlated random walk to the data¹.

 $^{^{1}}$ Avgar, T. et al. (2016). Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7(5), 619-630.

Johannes Signer (▼ jsigner@gwdg.de, ♥ signer_j, ♥ jmsigner)

Johannes Signer (≥ jsigner@gwdg.de, ≥ signer_j, ♀ jmsigner)

Johannes Signer (jsigner@gwdg.de, signer_j,) jmsigner)

Johannes Signer (Signer@gwdg.de, Signer_j, O jmsigner)

A case study: red deer in Germany

- 24 red deer collared in northern Germany from 2008 to 2013
- 6 hours sampling rate (the number of relocations range from 430 to 3600)
- Each observed step was paired with 9 random steps
- \bullet iSSF as mixed Poisson Regression^1 with package \mathtt{amt}^2

¹Muff, S. et al. (2018). Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. bioRxiv, 411801.

²Signer, J. et al. (2018. Animal Movement Tools (amt): R-Package for Managing Tracking Data and Conducting Habitat Selection Analyses. arXiv preprint arXiv:1805.03227.

With the following covariates

- Land cover (forest or open)
- Distance to urban areas
- Distance to home-range center
- Step length
- Interactions with time of day

Fixed effects:

Term	Estimate
Forest (time of day = day)	2.36***
Forest (time of day = night)	-3.42***

Fixed effects:

Term	Estimate
Forest (time of day = day)	2.36***
Forest (time of day $=$ night)	-3.42^{***}
Distance to urban (time of day = day)	0.26*
Distance to urban (time of day = night)	-0.39**

Fixed effects:

Term	Estimate
Forest (time of day = day)	2.36***
Forest (time of day = night)	-3.42^{***}
Distance to urban (time of day = day)	0.26*
Distance to urban (time of day = night)	-0.39**
Distance to center (time of day = day)	-3.36***
Distance to center (time of day = night)	3.28*

Fixed effects:

Term	Estimate
Forest (time of day = day)	2.36***
Forest (time of day = night)	-3.42***
Distance to urban (time of day = day)	0.26*
Distance to urban (time of day = night)	-0.39**
Distance to center (time of day = day)	-3.36***
Distance to center (time of day = night)	3.28*
$\log(ext{step length}) ext{ (time of day} = ext{day})$	-0.11^{***}
$log(step\;length)\;(time\;of\;day=night)$	0.46***

****p < 0.001, **p < 0.01, *p < 0.05

Underlying step-length distribution differs between day and night:

Johannes Signer (jsigner@gwdg.de, ♥ signer_j, O jmsigner)

Simulate and predict space use from fitted iSSF

- 1. A typical animal (fixed effects only)
- 2. Use random effects of a specific animal
- 3. For prediction: random effects of a similar animal (in environmental space)

A typical animal (fixed effects only)

Johannes Signer (∑ jsigner@gwdg.de, ♥ signer_j, ♥ jmsigner)

A typical animal (fixed effects only)

Johannes Signer (∑ jsigner@gwdg.de, ♥ signer_j, ♥ jmsigner)

This animal (random effects)

Johannes Signer (Signer@gwdg.de, Signer_j, O jmsigner)

This animal (random effects)

Johannes Signer (∑ jsigner@gwdg.de, ♥ signer_j, ♥ jmsigner)

Predict space use in a novel environment

Find animal that is closest to the new environment in environmental space...

Johannes Signer (**⊠** jsigner@gwdg.de, **У** signer_j, **○** jmsigner)

... and predict space use in novel environment.

... and predict space use in novel environment.

Johannes Signer (Signer@gwdg.de, Signer_j, O jmsigner)

... and predict space use in novel environment.

Johannes Signer (≥ jsigner@gwdg.de, ≥ signer_j, ♀ jmsigner)

Summary and outlook

- Space use depends on time of day and the environment.
- iSSFs provides a simple but powerful mechanistic movement model, that allows simulations.
- We are working on more sophisticated simulations (time varying covariates).

Appendix

I

Johannes Signer (≥ jsigner@gwdg.de, ♥ signer_j, O jmsigner)

Model

 $\begin{aligned} y_{ntj} &= \mathsf{Poisson}(\lambda_{ntj})\\ \mathsf{log}(\lambda_{ntj}) &= \alpha_{nt} + \beta_{1n} \textit{forest} + \beta_{2n} \textit{dist_urban} + \beta_{3n} \textit{log_sl}\\ &+ \beta_{4n} \textit{forestnight} + \beta_{5n} \textit{dist_urbannight} + \beta_{6n} \textit{dist_cent}\\ &+ \beta_{7n} \textit{log_slnight} + \beta_{8n} \textit{dist_cent}\\ &+ \beta_{9n} \textit{dist_centnight} \end{aligned}$

With

- $n = 1 \dots N$ individuals
- $t = 1 \dots T_n$ time points (= strata)
- $j = 1 \dots J$ steps per stratum.
- $y_{ntj} = 1$ for observed steps and 0 for random steps.
- $\alpha_{nt} \sim N(0, 10^6)$

Random effects were uncorrelated.

Johannes Signer (Signer@gwdg.de, Signer_j, O jmsigner)