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1. We’ve seen how to estimate parameters describing an
individual’s use of space
I RSFs
I SSFs

2. We may want to know what is driving any differences
among animals

3. We may want to pool information across individuals to better
understand population-level selection patterns
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Methods for Modeling Data From Multiple Individuals

1. Fit models to pooled data, ignoring the fact that we have
repeated measures, but use “robust SEs” (Generalized
Estimating Equations or a “cluster-level bootstrap”) for
inference

2. Fit models to individual animals and treat the estimates as
data (two-step approach)

3. Mixed models (aka hierarchical models, random effect
models): allow parameters to vary by animal
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Individual Variability is Important

1. Fit models to pooled data, ignoring the fact that we have
repeated measures, but use "robust SEs" (Generalized
Estimating Equations or a "cluster-level bootstrap")

2. Fit models to individual animals and treat the estimates as
data (two-step approach)

3. Mixed models, hierarchical models, random effect models:
allow parameters to vary by animal



maroonWM.png

Causes of Individual Variability
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Why do we care about individual variability?
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Functional Response in Habitat Selection

Assume animals needed a constant amount of a particular resource
(e.g., water).

What would you expect to see if you plotted animal-specific RSF
parameters against availability of that resource?

Aarts, G., Fieberg, J., Brasseur, S., & Matthiopoulos, J. (2013). Quantifying the effect of habitat availability on
species distributions. Journal of animal ecology, 82(6), 1135-1145.
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Why 2-Step Methods?

1. Fit models to pooled data, ignoring the fact that we have
repeated measures, but use "robust SEs" (Generalized
Estimating Equations or a "cluster-level bootstrap")

2. Fit models to individual animals and treat the estimates as
data (two-step approach)

3. Mixed models, hierarchical models, random effect models:
allow parameters to vary by animal
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Two-step versus Mixed Effects Models

"If you can’t explain it simply, you don’t
understand it well enough" - Albert Einstein

Two-step approach
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Independence?

What if we treat all data as independent? What problems may
we encounter?
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Thought Exercise

Imagine trying to quantify the relative amount of time Americans
and Europeans spend watching football.

Follow individuals for between 35 and 365 days. Record yi = 1 if
watched that day (0 otherwise).

Is the variable sample size problematic? If so, when?
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Pool data assuming independence

Conventional wisdom:

I Non-independence may not bias parameter estimators,
but. . .

I Estimates of uncertainty will be too small
I In reality, we need data to be ‘missing completely at random’

(MCAR)

MCAR: ni (sample size for each individual) does not depend on
the response of interest. . . . a problem if those that like football
tend to contribute more data!
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Non-independence

What about measures of uncertainty when assuming
independence?

I Can use cluster-level bootstrap (resample individuals)
I Generalized estimating equations (robust, sandwich

standard errors)
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Code for cluster-level bootstrap

nboot<-5000
beta.hat<-matrix(NA,nboot, 6)
uids<-unique(bdat$BearIDYear)
n.uids<-length(uids)
for(i in 1:nboot){

# reasample individuals
ids.boot<-data.frame(BearIDYear=sample(uids, n.uids, replace=T))

# Take all obs from these individuals
bootdat<-merge(ids.boot,bdat)

# Now fit lm and pull off coeficients
lm.boot.fit<-lm(log.heart.rate~log.move.rate*Season, data=bootdat)
beta.hat[i,]<-coef(lm.boot.fit)

}
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Generalized estimating equations

What are Generalized Estimating Equations (GEE)?

I Natural extension of generalized linear models to correlated
data.
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Generalized linear models

Assume Y comes from a distribution in the exponential family

I Gaussian
I Poisson (count data)
I Bernoulli (binary data)

Linear model applies to some transformation of the mean:

I η(µ) = β0 + x1β1 + . . . xpβp
I Poisson log(µ)
I Bernoulli: logit(µ) = log(µ/(1− µ))
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Generalized Linear Models

GLM: β̂MLE solves:
∑n

i=1
∂µi
∂β V−1

i (Yi − µi ) = 0.

I µi = E [Yi |Xi ] = f (Xi , β)
I Vi = Var [Yi |Xi ] = g(µi )
I ∂µi

∂β is a 1xp vector of derivatives of µi with respect to β
[p = dim(β)].

Logistic regression:

I µi = E [Yi |Xi ] = exp(Xiβ)/[1 + exp(Xiβ)]
I Vi = Var [Yi |Xi ] = µi (1− µi ).
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Generalized Estimating Equations (GEE)

GEE: β̂ solves:
∑n

i=1
∂µi
∂β V−1

i (α)(Yi − µi ) = 0.

I Yi = (Yi1,Yi2, ...Yimi ), a vector of responses for individual i
I ∂µi

∂β is a mixp matrix of first derivatives
I Vi (α) = A1/2

i Ri (α)A1/2
i is the variance-covariance matrix for

individual i
I Ai = variance model, typically based on exponential family

(e.g., µi (1− µi ) for binary data).
I Ri (α) = working correlation model that describes within

subject correlation.
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Fitting GEEs in R

library geepack:

geeglm(y ∼ x, family= , corstr = ) Options:

I family: poisson(), binomial(), gaussian(), Gamma(),
quasipoisson(), quasibinomial()

I crostr: independence, exchangeable, ar1

If data are MCAR:

β̂ will be asymptotically unbiased (think large no. of clusters)
even when the correlation structure (and model of the variance)
is mis-specified.

Works best with lots of similarly sized clusters.
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Generalized Estimating Equations

Notes: cluster(CollarID), method="breslow",
robust=TRUE (and much larger SEs!)
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Two-Step Approach

Step 1: fit models to individuals

f u
i (s) ∝ exp(elev (s)βi + popD(s)γi + forest(s)τi )

Step 2: Do statistics on (β̂i , γ̂i , τ̂i )

I calculate their variance/covariance (biased high due to sampling
variability)

I relate coefficients to animal-specific characteristics (e.g., age,
sex) using say lm

I plot coefficients against availability to explore functional
responses
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Fit models to individual animals

I Often a useful starting point (exploratory data analysis)
I Fewer parametric assumptions (no distributional

assumptions about random effects)

For justification of 2-step approach, see: Murtaugh, P. A. (2007).
Simplicity and complexity in ecological data analysis. Ecology,
88(1), 56-62.

In the context of step-selection functions:

I Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2011). Conditional
logistic regression with longitudinal follow-up and individual-level random
coefficients: A stable and efficient two-step estimation method. Journal of
Computational and Graphical Statistics 20, 767-784.

I Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2016). TwoStepCLogit:
Conditional Logistic Regression: A Two-Step Estimation Method. R package
version 1.2.5.
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Two-step Approach

I Quick and easy using the amt package in conjunction with
tidyverse in R

I See FisherRSF.R and FisherSSF.R (in Rscripts and Output
folders) for examples.
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Mixed models

f u
i (s) ∝ exp(elev (s)βi + popD(s)γi + forest(s)τi )

Further assume:

(βi , γi , τi ) ∼ N(µ, ψ)

Similar 2-step approach, but assume the regression parameters come
from a common normal distribution.

Advantages:

I inference at individual- and population-level with single model
I can “borrow strength” across individuals when estimating

(β1i , . . . , β2i )

But. . . more assumptions, added complexity maroonWM.png

Fitting Mixed RSFs and SSFs
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One Step: Random Effects

I Random effects were proposed for RSFs over 10 years ago1

I Majority of studies (80 % since 2016) only include random
intercept and no random slope(s).

1Gillies et al. "Application of random effects to the study of resource
selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.
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RSFs: Random Intercept-Only Models

1. Intercept in RSFs is not of interest and depends heavily on
the sampling ratio of used versus available points

2. Cannot (by definition) account for among-animal variation in
the regression slopes (i.e., functional responses)!

3. SEs will be too small, particularly with lots of observations
for each animal5

5Schielzeth, H. and W. Forstmeier (2009). Conclusions beyond support:
Overconfident estimates in mixed models. Behavioral Ecology 20, 416-420.
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Example: Goat RSFs6

glm <- glm(STATUS ~ TASP + ELEVATION, family=binomial(),
data = goats)

glmer_int <- glmmTMB(STATUS ~ TASP + ELEVATION + (1|ID),
family=binomial(),data = goats)

glmer_randcoef <- glmmTMB(STATUS ~ TASP + ELEVATION +
(1+TASP+ELEVATION|ID),
family=binomial(), data = goats)
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6Lele & Keim, (2006) Weighted distributions and estimation of resource
selection probability functions. Ecology 87, 3021–3028.
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SSFs: Mixed Effects

Conditional logistic regression with random effects is
computationally prohibitive for most data sets:

P(yntj = 1 |xxxntj ) = πntj =
exp(βββ>xxxntj + uuu>n zzzntj )∑
i exp(βββ>xxxnti + uuu>n zzznti )

, yntj |uuun ∼ B(πntj )

I Must integrate, numerically, over the distribution of uuun (no
closed-formed solution)

I coxme for small numbers of strata
I Alternatively, can use TwoStepCLogit::Ts.estim(), a

two-step approach
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Mixed SSF Trick

Reformulation SSFs as a Poisson model with stratum-specific
intercepts αnt

5

E(ynti ) = µnti = exp(µ +αnt +βββ>xxxnti +uuu>zzznti ) , ynti |uuun ∼ Po(µnti )

I Same likelihood kernel as condition logistic regression
likelihood, same β̂, same SE(β̂)

I But, then lots of intercepts to estimate
I Trick: αnt ∼ N(0,106) (avoids shrinkage and explicit

estimation)

5Armstrong et al. "Conditional Poisson models: a flexible alternative to
conditional logistic case cross-over analysis." BMC medical research
methodology 14.1 (2014): 122.
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SSF: Otter Example

I 9 otter

I 4167 used locations

I 41670 total locations

I predictors: habitat type (REST1 if rest-water
of a reservoir, STAU1 if in a reservoir), river
width

Slope estimates βSTAU βREST βWidth

Fixed effects models

clogit −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (INLA) −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

cPois (glmmTMB) −0.07 (0.07) −0.38 (0.10) 0.16 (0.04)

Weinberger, I. C., S. Muff, A. Kranz, and F. Bontadina (2016). Flexible habitat selection paves the way for a recovery
of otter populations in the European Alps. Biological Conservation 199, 88–95.
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Mixed Effects
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Speed: I TS.estim (1.75 seconds)

I glmmTMB (5 seconds)

I INLA (90 seconds)

I coxme (right-censor 24 hrs) maroonWM.png

Practicals

Will see how to fit mixed RSFs and mixed SSFs using glmmTMB
and INLA

I fisher data
I your own data?
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Summary: Methods for Inference

1. Fit models to pooled data, ignoring the fact that we have
repeated measures
I Use a cluster-level bootstrap or GEEs for inference
I Can be reasonable if ni is similar among animals and you

are interested in population-level habitat selection patterns

2. Fit models to individual animals and treat the estimates as
data (two-step approach)
I Provides a simple way to explore among-animal variability

3. Mixed models, hierarchical models, random effect models:
allow parameters to vary by animal
I Similar to [2], but accomplish in 1-step
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