How to Analyze Data From Multiple Animals

John Fieberg, Associate Professor

Department of Fisheries, Wildlife and Conservation Biology

- 1. We've seen how to estimate parameters describing an individual's use of space
 - RSFs
 - SSFs
- 2. We may want to know what is driving any differences among animals
- We may want to pool information across individuals to better understand population-level selection patterns

Methods for Modeling Data From Multiple Individuals

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap") for inference
- Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models (aka hierarchical models, random effect models): allow parameters to vary by animal

Individual Variability is Important

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap")
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal

Causes of Individual Variability

Echanya Carlos	Sex-specific adjus contribute to buff conditions @ Pascal Marchard, Mathieu Gar Anne Leison Author Notes	ainst summer Elland 2015 Intel 2 County 2015 Annual 2 County 2015 2015 with	win av blan relation June 1991	
Volume 26, Issue 2 March-April 2015	Behavioral Ecology, Volume 2 https://doi.org/10.1033/beha			
Habi	22 542-554. Copenhagen 2001 tat selection by predators metrical intraguild predati R. Heithans	Department o Museum of Aburvary.—Because a it is of interest to dete ecologically importan cause it determines to	VARIATION FOR HABITAT PREFERENCE EVIDENCE AND EXPLANATIONS Jons JAISME AND ROHER D. HOLT Billing, Universit of Rohems, Rokener, New York I. Namir Billware and Department of Potentials and Eader University of Atana. Jonemic Kanna Bild University of Atana. Jone Status and Atana English and Atana Bild Atana Atana Atana Santa Atana Atana Atana Atana Atana Atana Santa Atan	4627: 15 in behavior, 10 variation for schavior, be- mins to the
	Heithans, M. B asymmetrical in	common, especially i questly. Possible ada populations include a a preference for it; an independently in sen	y of the internate reveals that general which have been studied prive mechanisms by which this variation could be maint genetic correlation between density-independent fitness in a fort which whereas density-independent population rugal rath habitats. Several studies have documented a phenotypi	ied most fre- ained within a hubitat and lation occurs

Functional Response in Habitat Selection

Assume animals needed a constant amount of a particular resource (e.g., water).

What would you expect to see if you plotted animal-specific RSF parameters against availability of that resource?

Why do we care about individual variability?

Ecology & Evolutionary	Department of Ecology & Evels y Elekspy, Oniversity of Celora	stenwy Stology, University of Colorado at Doulder) & Laticia S do at Doulder) © 2010 Natare Education	CO INFACT			e
Challent Revel, M. & L	anches, L. (2010) Roth Paylore	ment and Generic Makeus Inflaence Debasics, Kalura	Journal of Applied Restary 2	101, R2 (Re-304	det 1	CTILES BALLS
Education Knowledge	3:40:658			Adjustments in habitat selection to changing		
How do genes and the environment come together to shape animal behav important roles. Genes capture the evolutionary responses of prior populat			unculate			
	onmental flexibility	Occologia (2017) 183:415-425 DOI 10.00354642-017-39354	Orvaliel L. Louise ¹⁴ .	Serae Coulurier ¹ . Marii	ConsNark	stel Partin [®] - Intege
	Ecolog	BEHAVIORAL ECOLOGY -ORIGINAL RESE	ARCH			denate Genetic relit is Cont
	Antigrame, OPERA BALA					
LETTER	Intragroup competi	Not accounting for interindivid	lual variability	can mask ha	bitat	t de la Faun
LETTER		Not accounting for interindivie selection patterns: a case study			bitat	t de la Faun de Sty RJ
Colorine I. Shagarof' Midaat tagar' Kolois A. Midaadi' fan katia," Midawii, Johan, "Awa J.	Intragroup competi specialisation in a y hierar bidenial lenging operator bide point are motion. Or morphism for measures in the point of the point of the point of the point of the point of the point sector of the point of the point of the point sector of the point of the point of the point sector of the point of the point of the point sector of the point of the point of the point sector of the point of the point of the point of the sector of the point of the point of the point of the point sector of the point of the point of the point of the point of the sector of the point of the sector of the point of the point of the point of the point of the sector of the point of the point of the point of the point of the sector of the point of the point of the point of the point of the sector of the point of t				ıbitat	t de Arfaue OC STV R.5 Institut des
(allerine 5. Singport) ² Mintart Ingel ⁴ Solition A. Mintardi ² Sone Kolon ²⁷ Solition ¹ , Solition ¹ , Sign J. Sonegan ¹ , Sone S. K. Mintaren ^{1, K.} Mintart A. Con ¹²	Intragroup competi specialisation in a p Admet Mathematic longing speciality Print politi at mathematic sequences of an ensemble of doubt add any per borns to dry Mennys, down ongo to add positioning and prese We toadd their conversion of prese We toadd their conversion of prese	selection patterns: a case study Rimi Loneries ² · Marin-Bagaes St-Laurent ²		s	ibitat	t de Arfaue OC STV R.5 Institut des
(staria 1. Sagard" Histoliga" folia A. Mitadi (ga" folia A. Mitadi (for Iota)" Mitari, Iotan "Spi J. Dangari, Yana I. S.	Intragroup competi specialisation in a him of the second second him of the second second second second second second second second to the second second second second second second second second second second second second second seco	selection patterns: a case study Rimi Lemacies ¹ · Martin-Hugser St-Lauren ¹	on black bear	S and James S. Level		ation:
(allerine 5. Singport) ² Mintart Ingel ⁴ Solition A. Mintardi ² Sone Kolon ²⁷ Solition ¹ , Solition ¹ , Sign J. Sonegan ¹ , Sone S. K. Mintaren ^{1, K.} Mintart A. Con ¹²	Intragroup competi specialisation in a 	selection patterns: a case study Rind Lonario ¹ · Marin-Hagan St-Lauren ² Marin Lauren ¹ · Chartie-Hagan St-Lauren ² Marin Hill, and State and Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	on black bear	S and James A. Erics ¹ (Series Description (Series), Gr	abitat	ation
(allerine 5. Singport) ² Mintart Ingel ⁴ Solition A. Mintardi ² Sone Kolon ²⁷ Solition ¹ , Solition ¹ , Sign J. Sonegan ¹ , Sone S. K. Mintaren ^{1, K.} Mintart A. Con ¹²	Instagroup competent specialisation in a second sec	selection patterns: a case study Rind Leanceire ¹⁴ · Martin Hagan St Lauren ¹⁴	on black bear	S and James A. Erice ⁴ - Driven, Dennis M. College, C. Brann, C. Starter, M. Martinger, Contr. RA, on appendix to sense of the paper drive of work of the paper drive the monte of the paper drive them. University the activity	ning (co.) (ation

Why 2-Step Methods?

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap")
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal

Two-step versus Mixed Effects Models

Independence?

What if we treat all data as independent? What problems may we encounter?

"If you can't explain it simply, you don't understand it well enough" - Albert Einstein

• Two-step approach

Thought Exercise

Pool data assuming independence

Imagine trying to quantify the relative amount of time Americans and Europeans spend watching football.

Follow individuals for between 35 and 365 days. Record $y_i = 1$ if watched that day (0 otherwise).

Is the variable sample size problematic? If so, when?

Conventional wisdom:

- Non-independence may not bias parameter estimators, but...
- Estimates of uncertainty will be too small
- In reality, we need data to be 'missing completely at random' (MCAR)

MCAR: n_i (sample size for each individual) does not depend on the response of interest...a problem if those that like football tend to contribute more data!

Non-independence

Code for cluster-level bootstrap

What about measures of uncertainty when assuming independence?

- Can use cluster-level bootstrap (resample individuals)
- Generalized estimating equations (robust, sandwich standard errors)

> head(bdat)

	concat	1u11an	rimecount2	cdate	Seario	BearIbyear	hr	5ex	season cat	log, move m	ear	5ex2	log, hr	Ifall.	15ummer
	402110402740ay		1	4/6/2010						2.939 21					
	402110402750W	97	3	4/7/2010	4021	402110	54	F	Secing Day	0.525 21	010	Fem	3,99	FALSE	EALSE
	40211040277pay	99	7	4/9/2010	4021	402110	34		spring pay	-0.596 21	010	res	3, 53	FALSE	FALSE.
	402110402800ay			4/12/2010					Spring Day	-0.375 21					
	402110402810ay			4/13/2010		402110			Spring Day	-0.639 21					
1	402110402820ay	104	17	4/14/2010	4021	402110	41		spring bay	0.540 21	010	ren	3,71	FALSE	FALSE

nboot	c<-5000	
beta	a.hat<-matrix(NA, nboot, 6)	
uids	a<-unique (bdat SBearIDYear)	
n.ui	ids<-length(uids)	
for	(i in l:nboot) {	
	reasample individuals	
	<pre>ids.boot<-data.frame(BearIDYear-sample(uids, n.uids,</pre>	replace=T))
	Take all obs from these individuals	
	<pre>bootdat<-merge(ids.boot,bdat)</pre>	
	Now fit im and pull off coeficients	
	<pre>lm.boot.fit<-lm(log.heart.rate-log.move.rate+Season.</pre>	data=bootdat)
	beta.hat[i,]<-coef(lm,boot.fit)	
	beta.hat[i,]<-coef(lm.boot.fit)	

Generalized estimating equations

Generalized linear models

Assume Y comes from a distribution in the exponential family

- Gaussian
- Poisson (count data)
- Bernoulli (binary data)

Linear model applies to some transformation of the mean:

- $\blacktriangleright \eta(\mu) = \beta_0 + x_1\beta_1 + \dots x_p\beta_p$
- Poisson log(µ)
- Bernoulli: logit(μ) = log(μ/(1 μ))

What are Generalized Estimating Equations (GEE)?

 Natural extension of generalized linear models to correlated data.

Generalized Linear Models

Generalized Estimating Equations (GEE)

GLM: $\hat{\beta}_{MLE}$ solves: $\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta} V_i^{-1} (Y_i - \mu_i) = 0.$

$$\blacktriangleright \mu_i = E[Y_i|X_i] = f(X_i, \beta)$$

- $\bigvee_{i} = Var[Y_i|X_i] = g(\mu_i)$
- $\frac{\partial \mu_i}{\partial \beta}$ is a 1xp vector of derivatives of μ_i with respect to β [$p = dim(\beta)$].

Logistic regression:

$$\blacktriangleright \mu_i = E[Y_i|X_i] = \exp(X_i\beta)/[1 + \exp(X_i\beta)]$$

 $\blacktriangleright V_i = Var[Y_i|X_i] = \mu_i(1 - \mu_i).$

GEE: $\hat{\beta}$ solves: $\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta} V_i^{-1}(\alpha) (Y_i - \mu_i) = 0.$

- Y_i = (Y_{i1}, Y_{i2}, ... Y_{imi}), a vector of responses for individual i
- ^{\u03c6}/_{\u03c6} is a m_ixp matrix of first derivatives
- V_i(α) = A^{1/2}_iR_i(α)A^{1/2}_i is the variance-covariance matrix for individual i
- A_i = variance model, typically based on exponential family (e.g., μ_i(1 – μ_i) for binary data).
- ► R_i(α) = working correlation model that describes within subject correlation.

Fitting GEEs in R

library geepack:

geeglm(y ~ x, family= , corstr =) Options:

- family: poisson(), binomial(), gaussian(), Gamma(), quasipoisson(), quasibinomial()
- crostr: independence, exchangeable, ar1

If data are MCAR:

 $\hat{\beta}$ will be asymptotically unbiased (think large no. of clusters) even when the correlation structure (and model of the variance) is mis-specified.

Works best with lots of similarly sized clusters.

Generalized Estimating Equations

Notes: cluster(CollarID), method="breslow", robust=TRUE (and much larger SEs!)

Two-Step Approach

Step 1: fit models to individuals

 $f_i^u(s) \propto \exp(elev(s)\beta_i + popD(s)\gamma_i + forest(s)\tau_i)$

Step 2: Do statistics on $(\hat{\beta}_i, \hat{\gamma}_i, \hat{\tau}_i)$

- calculate their variance/covariance (biased high due to sampling variability)
- relate coefficients to animal-specific characteristics (e.g., age, sex) using say lm
- plot coefficients against availability to explore functional responses

Fit models to individual animals

- Often a useful starting point (exploratory data analysis)
- Fewer parametric assumptions (no distributional assumptions about random effects)

For justification of 2-step approach, see: Murtaugh, P. A. (2007). Simplicity and complexity in ecological data analysis. Ecology, 88(1), 56-62.

In the context of step-selection functions:

- Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2011). Conditional logistic regression with longitudinal follow-up and individual-level random coefficients: A stable and efficient two-step estimation method. Journal of Computational and Graphical Statistics 20, 767-784.
- Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2016). TwoStepCLogit: Conditional Logistic Regression: A Two-Step Estimation Method. R package version 1.2.5.

Two-step Approach

- Quick and easy using the amt package in conjunction with tidyverse in R
- See FisherRSF.R and FisherSSF.R (in Rscripts and Output folders) for examples.

1#		id	n	Elevation	forest	`log(sl_)`	PopDens	sl
10		<fct></fct>	<int></int>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1< td=""></db1<>
=	1	F1	6391	0.0337	17.4	0.751	-0.00208	0.00272
==	2	F2	22165	0.0467	-0.274	0.687	-0.00112	-0.00338
==	3	F3	10169	0.0868	-0.591	0.603	-0.00225	0.00076
10	4	M1	4697	0.0776	-0.219	0.510	0.000583	0.00352
=	5	M2	10709	0.0292	-0.258	0.441	-0.00258	0.00193
==	6	MB	15547	0.0485	0.470	0.532	-0.00157	0.00272
tit.	7	M4	54810	0.0153	0.213	0.644	-0.000511	0.00197
==	8	M5	52303	0,00350	NA	0,848	-0.0232	0.00444

Mixed models

$f_i^u(s) \propto \exp(elev(s)\beta_i + popD(s)\gamma_i + forest(s)\tau_i)$

Further assume:

 $(\beta_i, \gamma_i, \tau_i) \sim N(\mu, \psi)$

Similar 2-step approach, but assume the regression parameters come from a common normal distribution.

Advantages:

- inference at individual- and population-level with single model
- can "borrow strength" across individuals when estimating (β_{1i},..., β_{2i})
- But...more assumptions, added complexity

One Step: Random Effects

Random effects were proposed for RSFs over 10 years ago¹

 Majority of studies (80 % since 2016) only include random intercept and no random slope(s).

Fitting Mixed RSFs and SSFs

Search

New Results

Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation

Stefanie Muff, O Johannes Signer, John Fieberg doi: https://doi.org/10.1101/411801

RSFs: Random Intercept-Only Models

- 1. Intercept in RSFs is not of interest and depends heavily on the sampling ratio of used versus available points
- 2. Cannot (by definition) account for among-animal variation in the regression slopes (i.e., functional responses)!
- 3. SEs will be too small, particularly with lots of observations for each animal $^{\rm 5}$

¹Gillies et al. "Application of random effects to the study of resource selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.

⁵Schielzeth, H. and W. Forstmeier (2009). Conclusions beyond support: Overconfident estimates in mixed models. Behavioral Ecology 20, 416-420.

Example: Goat RSFs⁶

⁶Lele & Keim, (2006) Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021–3028.

Mixed SSF Trick

Reformulation SSFs as a Poisson model with stratum-specific intercepts $\alpha_{nt}{}^5$

$$E(y_{nti}) = \mu_{nti} = \exp(\mu + \alpha_{nt} + \beta^T \mathbf{x}_{nti} + \mathbf{u}^T \mathbf{z}_{nti}), \quad y_{nti} | \mathbf{u}_n \sim Po(\mu_{nti})$$

- Same likelihood kernel as condition logistic regression likelihood, same β̂, same SE(β̂)
- But, then lots of intercepts to estimate
- Trick: α_{nt} ~ N(0, 10⁶) (avoids shrinkage and explicit estimation)

SSFs: Mixed Effects

Conditional logistic regression with random effects is computationally prohibitive for most data sets:

$$\mathsf{P}(y_{ntj} = 1 \mid \boldsymbol{x}_{ntj}) = \pi_{ntj} = \frac{\exp(\beta^\top \boldsymbol{x}_{ntj} + \boldsymbol{u}_n^\top \boldsymbol{z}_{ntj})}{\sum_i \exp(\beta^\top \boldsymbol{x}_{ntj} + \boldsymbol{u}_n^\top \boldsymbol{z}_{ntj})}, \quad y_{ntj} \mid \boldsymbol{u}_n \sim \mathsf{B}(\pi_{ntj})$$

- Must integrate, numerically, over the distribution of un (no closed-formed solution)
- coxme for small numbers of strata
- Alternatively, can use TwoStepCLogit::Ts.estim(), a two-step approach

SSF: Otter Example

- 9 otter
- 4167 used locations
- 41670 total locations
- predictors: habitat type (REST1 if rest-water of a reservoir, STAU1 if in a reservoir), river width

Slope estimates	β_{STAU}	β_{REST}	β Width				
Fixed effects models							
clogit	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)				
cPois (INLA)	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)				
cPois (glmmTMB)	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)				

Weinberger, I. C., S. Muff, A. Kranz, and F. Bontadina (2016). Flexible habitat selection paves the way for a recovery of otter populations in the European Alps. Biological Conservation 199, 88–95.

⁵Armstrong et al. "Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis." BMC medical research methodology 14.1 (2014): 122.

Mixed Effects

Summary: Methods for Inference

- 1. Fit models to pooled data, ignoring the fact that we have repeated measures
 - Use a cluster-level bootstrap or GEEs for inference
 - Can be reasonable if n_i is similar among animals and you are interested in population-level habitat selection patterns
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
 - Provides a simple way to explore among-animal variability
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal
 - Similar to [2], but accomplish in 1-step

Practicals

Will see how to fit mixed RSFs and mixed SSFs using gImmTMB and $\ensuremath{\mathsf{INLA}}$

- fisher data
- your own data?